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Phase diagram for area scaling in bistable hysteresis

Debashish Bose* and Subir K. Sarkar†

School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
~Received 13 June 1997!

We present a comprehensive numerical study of the scaling properties of the area of the hysteresis loop
generated by the dynamics of the equationẋ(t)5x2x31a cosvt. Scaling exponents of the area with respect
to both amplitude (a) and frequency (v) of modulation are calculated over a very large region of the
amplitude-frequency plane and a phase diagram of the scaling properties is constructed on the basis of these
data.@S1063-651X~97!03812-9#

PACS number~s!: 05.45.1b, 42.65.Pc, 02.90.1p, 42.55.2f
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I. INTRODUCTION

The phenomenon of hysteresis in simple model syste
has received considerable attention over the last few y
@1–12#. This revival of interest is due partially to its techn
logical importance. But it has also been driven by the fun
mental interest in understanding the phenomenon itself, s
it is observed in a wide variety of systems in nature. In so
of the systems studied hysteresis is purely dynamical in
gin, whereas in some others irreversibility is caused parti
by interaction with a heat bath. In this paper we will b
considering a hysteretic system of the first type, which
already received some attention in the context of switch
in optical and electronic devices. An example of one su
work is Ref.@13#, which is henceforth referred to as JGR
in this paper. The dynamical equation studied in JGRM
given by

dx

dt
5ax2bx31a cosvt ~1!

~with a and b.0) wherea and v represent the amplitud
and frequency of modulation. Through a suitable choice
the units ofx and t, Eq. ~1! can be reduced to the form

dx

dt
5x2x31a cosvt. ~2!

In this paper we investigate the scaling properties of the a
denoted byA(a,v), of the hysteresis loop.A(a,v) is given
by

R x~ t !d~a cosvt !,

where the integral is over one complete cycle of modulat
after the trajectoryx(t) has converged onto the attracto
Scaling behavior of the quantityA(a,v) was the object of
investigation in JGRM where they established, both anal
cally and numerically, thatin the limit of low frequencythe
hysteresis loop area is given by
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@A~a,v!2A0#5K@v2~a22ac
2!#1/3, ~3!

whereac ~equal to 2/3A3) is the critical amplitude neede
for the observation of dynamical hysteresis and

A05 lim
v→01

A~a,v!51.5.

A0 is independent ofa for a.ac . K is a constant of pro-
portionality. In this paper our basic goal is to understand
scaling properties when the frequency is too high for
description given by Eq.~3! to be valid. We will present a
comprehensive numerical study of the scaling properties
the area of the hysteresis loop with respect to both freque
and amplitude of modulation. This complements the study
JGRM but we have undertaken this study largely to und
stand our own previous results regarding hysteresis
when noise is added to the right hand side of Eq.~2! @14#. In
Sec. II we describe the methodology of our investigatio
Section III describes the results and finally Sec. IV conta
some concluding remarks.

II. METHODOLOGY

To study the area scaling properties of the dynamics
scribed by Eq.~2!, we make use of what is already known fo
the scaling properties when the dynamics is described b

dx

dt
52x31a sinvt. ~4!

Here the scaling law in the low frequency regime is given

A~a,v!}~av!4/5. ~5!

This was derived in Ref.@15# in the context of an optically
bistable semiconductor laser, when it is operated exactl
the threshold. The only difference between Eqs.~2! and~4! is
the term linear inx, which is present in Eq.~2! but is missing
in Eq. ~4!. If in the solution of Eq.~2!, it so happens thatx is
much smaller thanx3 for most of the time in a given cycle o
modulation, then in that range of parameters (a,v) of the
dynamics, scaling laws for Eq.~2! can be expected to b
same as those for Eq.~4!. This condition is likely to be
satisfied whena@1 andv is in an intermediate range. Th
reason whyv should be in an intermediate range is that t
6581 © 1997 The American Physical Society
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6582 56DEBASHISH BOSE AND SUBIR K. SARKAR
amplitude of motion for a fixed value ofa generally de-
creases with increasingv. Thus if v is too high the ampli-
tude of motion is correspondingly small and the conditi
that x should be much less thanx3 is explicitly violated. On
the other hand ifv is too small then also the argument give
above for the existence of identical scaling properties bre
down. For a fixed value ofa, asv goes to zero, the hyster
esis loop shrinks continuously and the size becomes a
trarily small for Eq.~4!. But, in the same limit, the area o
the hysteresis loop reaches a limiting finite value for Eq.~2!
with the regionx!x3 not contributing to the area of the loo
at all. So if we leave out this low frequency range, where E
~3! should be applicable, the scaling properties for Eq.~2!
should be essentially the same as those for Eq.~4! if a is
sufficiently large. We keep this observation in mind in wh
is to follow. We have carried out extensive numerical calc
lation for A(a,v) in a very large range of the values ofa
andv to test this proposition. Thus we find that asa goes to
ac from the upper side, the scaling exponents for botha and
v are indeed 2/3 as already derived and verified in JGR
But as a becomes very large andv goes beyond the low
frequency regime the area scaling exponents with respe
both a andv approach 4/5 as established in Ref.@15#. We
also observe a continuous transition between these two k
of scaling behavior in a sense that will be elaborated
through the presentation and analysis of our numerical d
We have reasons to believe that the range of amplitude
frequency that we have considered is comprehensive in
sense that no new scaling properties are expected beyond
domain in the amplitude-frequency plane.

III. RESULTS

Our numerical data are generated by integrating Eq.~2!
from an arbitrary initial condition and applying suitable co
vergence criterion on the hysteresis loop area as a functio
the cycle number of the applied modulation. Analysis
scaling of area with respect to frequency and amplitude
presented in Secs. III A and III B, respectively. Section III
combines the results of Secs. III A and III B to produce t
unified phase diagram of the scaling analysis.

A. Scaling with respect to frequency

We have computed the area of the hysteresis loop a
function of frequency for a set of values of the amplitude
the range 1–105. For each value of the amplitude, the ran
of frequency studied varies from six to ten decades. Figu
1~a! and 1~b! display the area of the hysteresis loop as
function of frequency on a log-log scale for two values
amplitude for purposes of illustration. In every case, initia
the area increases with frequency, reaches a maximum
characteristic frequencyvp(a), and then decreases beyon
it. For v and a sufficiently greater thanvp(a) and ac ,
respectively, the area is given exactly bypa2v21. This can
be seen easily from Eq.~2!. When a is large compared to
unity andv is sufficiently higher thanvp(a), ẋ(t) will be
equal toa cosvt and the above result follows. In contrast,
frequency goes to zero,@A(a,v)2A0# should go to zero as
v2/3. For this reason the vertical axis in Figs. 1~a! and 1~b!
denotes log10@A(a,v)2A0# and log10A(a,v) for v less than
ks
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and greater thanvp(a), respectively. As can be seen fro
the figures, the exponent is always21 in the high frequency
regime beyondvp(a). For v,vp(a), the situation is as
follows:

vp(a) is a monotonically increasing function ofa and
goes asa2/3 for a@ac . As we will see later, this power law
dependence ofvp(a) is consistent with the scaling behavio
we are proposing and is supported by our numerical data
in the region where area increases with frequency, the up
limit of the range ofv for a particular value ofa is given by
vp(a), which is intrinsic to the problem. On the other han
although the lower limit ofv is actually zero, for the purpos
of numerical work, computational constraints force us to ta
its value to be in the range of 1024–1023. We denote this
lower limit by vmin(a). This computational limitation cre-
ates a problem when it comes to verifying the area sca
law in the limit v→0, for larger values ofa. We expect the
exponent to be 2/3 for frequency in the range between 0
some upper limitv0(a). But v0(a) continues to decrease a
a increases and eventually falls below the lowest freque
@vmin(a)# that we can deal with computationally, within ou
resources. Figure 1~b! illustrates such a situation where th
range with the exponent equal to 2/3 is entirely below

FIG. 1. Log-log plot of the area of the hysteresis loop as
function of the frequency of modulationv for two different values
of the amplitude of modulation:~a! a5102 and~b! a5105. A is the
area andD has different values specified in the figures for poin
denoted by different kinds of symbols,d andh.
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56 6583PHASE DIAGRAM FOR AREA SCALING IN BISTABLE . . .
lowest frequency for which the data are available. The d
for frequency betweenvmin(a) andvp(a) are divided into
one or more ranges such that data over each range ca
fitted to a straight line to a very good approximation.

Table I shows the results of this analysis for a repres
tative set of values of the amplitude. It contains informati
regarding the ranges into which the data have been div
in each case and the best fit value of the scaling exponen
each range. The data contained in Table I reflect the foll
ing scenario: for larger values of the amplitude there will
three regions. Region I covers the domain 0,v,v0(a)
where the scaling exponent is 2/3. Region III, which w
exist only whena is sufficiently high, is characterized by a
exponent of 4/5—the domain of applicability bein
v1(a),v,vmax(a), wherevmax(a) is somewhat smalle
than vp(a). Region II @v0(a),v,v1(a)# is a transition
region where the slope changes from 2/3 to 4/5. The reg
containing data withv.vp(a) is defined to be region IV
and it exists for all values of the amplitude. The last colum
of Table I displays information regarding the type of regi
that the data in a particular row represent. Whena is just
aboveac , only regions I and IV will be present. Asa is
increased so thatvp(a) is sufficiently higher thanv0(a),
region II will also make an appearance. Finally asa in-
creases even more region III will also come into the pict
and an increasingly higher range of data just belowvp(a)
will have a slope of 4/5 asa continues to increase. Whil
checking this scenario with the data that are presente
Figs. 1~a! and 1~b! and Table I one has to remember that
or parts of regions I and II may be missing at higher amp
tudes since the data in the range 0,v,vmin(a) are not
available.

B. Scaling with respect to amplitude

The analysis for scaling with respect to amplitude a
follows the procedure used above. For purposes of illus
tion the area of the hysteresis loop is plotted as a functio
the amplitude on a log-log scale for the time period (T)
equal to 3.23102 and 1.2531021 in Figs. 2~a! and 2~b!,

TABLE I. Scaling exponents with respect to frequency and th
ranges of applicability for different values of the amplitude.

Amplitude Frequency range Scaling exponent Regio

1.0 1023.821021.4 0.656 I
.101.0 -1.000 IV

10.0 1023.921020.1 0.667 I
.101.6 -0.999 IV

1.03102 1023.921022.6 0.670 I
1022.32100.5 0.717 II

.101.6 -1.000 IV
1.03103 1023.921022.2 0.699 II

1022.02100.9 0.756 III
.102.2 -1.000 IV

1.03104 1023.921022.6 0.733 II
1022.32101.8 0.772 III

.102.9 -0.999 IV
1.03105 1022.72102.0 0.784 III

.103.8 -1.000 IV
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respectively. The analysis in the following makes use of d
computed for a set of values of time period spanning se
decades. The amplitudea varies over five decades in eac
case. The area is always a monotonically increasing func
of amplitude. To facilitate scaling analysis the data in Fi
2~a! and 2~b! are presented using appropriate biasesD andb
for area and amplitude, respectively. The actual values oD
andb are different for points represented by different kin
of symbols and their values are given in the figures. T
points represented by squares denote cases whenv is greater
thanvp(a). This is the region where area (A) is known to
be proportional toa2v21 and thus for these points, define
to be part of region IV~in continuation of the notation use
in Sec. III A!, the slope should be 2. For the data outside
region IV we are actually plotting@A(a,v)2A0# as a func-
tion of Aa22ac

2 on a log-log scale. Over a range ofa just
aboveac the scaling law given by Eq.~3! should be appli-
cable and the slope in the log-log plot should be equal to 2
This is denoted by region I. If the amplitude is sufficient
high then we expect the area to be proportional to 4/5 po
of amplitude. Thus, independent of the value of the f
quency, the slope in the log-log plot should always be 4/5
the region~region III! where the amplitude is sufficiently

ir

FIG. 2. Log-log plot of the area of the hysteresis loop as
function of the amplitude of modulationa for two different values
of the time period of modulation:~a! T53.23102 and ~b!
T51.2531021. A is the area.D andb have different values speci
fied in the figures for points denoted by different kinds of symbo
d andh.
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6584 56DEBASHISH BOSE AND SUBIR K. SARKAR
high. When both regions I and III exist there is also a tra
sition region~region II! where the slope changes from 2/3
4/5. This can be seen in Fig. 2~a!. In Table II we present the
information regarding the ranges into which the data h
been divided in each case and the best fit value of the sca
exponent for each range. The type of region for each rang
specified in the fourth column. Sincevp(a) is a monotoni-
cally increasing function, region IV will continue to shrin
as the frequency goes to zero. Hence when the frequen
very low we should see regions I, II, and III as illustrated
Fig. 2~a!. As frequency increases eventually region I w
disappear first followed by region II. Simultaneously an
creasing range of data in the lower amplitude end will app
in region IV.

C. Phase diagram of the scaling exponents

We now combine the results presented in the Secs. I
and III B to produce a unified phase diagram for the scal
exponents in the amplitude-frequency plane. This is d
played in Fig. 3. The four regions marked I, II, III, and I
are two-dimensional extensions of the nomenclature alre
used in Secs. III A and III B. The extended vertical lin

TABLE II. Scaling exponents with respect to amplitude a
their ranges of applicability for different values of the time perio

Time period Amplitude range Scaling exponent Regio

2.563103 100.212102.4 0.677 I
102.62103.7 0.730 II
104.22105.0 0.775 III

3.203102 100.032101.4 0.683 I
101.92102.9 0.735 II
103.22105.3 0.786 III

4.003101 1020.062102.0 0.732 II
102.62105.3 0.796 III

5.003100 100.902105.3 0.806 III
1.2531021 100.032102.0 2.000 IV

104.22105.3 0.826 III
2.4431024 100.032105.3 2.000 IV

FIG. 3. Phase diagram for the area scaling properties in
amplitude-frequency plane.
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touching the frequency axis denote the values of the
quency for which area versus amplitude data were prese
in Table II. The filled circles very close to the amplitude ax
denote the lowest frequency data points for each of the
ues of the amplitude for which the area versus frequency d
were presented in Table I. The curve passing through
squares is the representation of the functionvp(a). Within a
narrow band on either side of this curve in thev-a plane
there is no well-defined scaling property. In the region abo
the line PQR ~region III! the scaling exponent with respe
to both amplitude and frequency is 4/5. It should be reme
bered that, starting from the pointQ, the linesQP andQR
extend indefinitely. Below the lineTS and above the curve
for vp(a), extended indefinitely towards the low frequen
end, the scaling property is of the type represented by
~3!. This is the domain for which the scaling properties we
first derived and verified in JGRM. Region II, in between t
lines TS andQP extended indefinitely towards the low fre
quency end, is where the scaling exponent changes from
to 4/5 for both frequency and amplitude. To check that t
phase diagram is consistent with the information available
Tables I and II one just has to take sections parallel to
frequency and amplitude axes of the phase diagram at
appropriate values of the amplitude and frequency, resp
tively. It must be remembered that a certain amount of s
jectivity is involved in identifying the boundaries of region
as well as the high frequency boundaryQR of region III.
Finally, to see that the functionvp(a) goes asa2/3 for large
a, consider the dependence of the functionA(a,v) on
a and v on the two sides of the curve represented by
functionvp(a) in the (a,v) plane. Since regions III and IV
meet along this dividing line~apart from a narrow transition
band! for higher values of the amplitude, the two expressio
for A(a,v) must produce the same value along this lin
Thus @avp(a)#4/5 must be proportional toa2vp

21(a), i.e.,
vp(a) is proportional toa2/3.

IV. DISCUSSION

In this paper we have presented a comprehensive num
cal study of the scaling properties of the area of the hys
esis loop generated by the dynamics of Eq.~2!. For reasons
that should be apparent, no new scaling properties are
pected in the domains of the amplitude-frequency plane
have not been explored in this study. For the applicatio
discussed in JGRM and in Ref.@15#, hysteresis loss in the
low frequency regime was the object of primary interest. B
in the present study we have imposed no such restriction
the frequency. Since Eq.~2! provides a rather commonly
used mathematical model of bistable hysteresis in many
ferent kinds of situations we hope that the results descri
in this paper will be of relevance in these different contex
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