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Phase diagram for area scaling in bistable hysteresis
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We present a comprehensive numerical study of the scaling properties of the area of the hysteresis loop
generated by the dynamics of the equatigt) = x—x3+ « coswt. Scaling exponents of the area with respect
to both amplitude &) and frequency &) of modulation are calculated over a very large region of the
amplitude-frequency plane and a phase diagram of the scaling properties is constructed on the basis of these
data.[S1063-651X97)03812-9

PACS numbegps): 05.45+b, 42.65.Pc, 02.96.p, 42.55f

I. INTRODUCTION [A(a,w) _AO] — K[wZ( a2_ ag)]lB, (3)

The phenomenon of hysteresis in simple model systemsherea, (equal to 2/3/3) is the critical amplitude needed
has received considerable attention over the last few yeafsr the observation of dynamical hysteresis and
[1-12]. This revival of interest is due partially to its techno-
logical importance. But it has also been driven by the funda- Ao= lim A(a,w)=1.5.
mental interest in understanding the phenomenon itself, since 00+

it is observed in a wide variety of systems in nature. In somg% is independent of for a>a,. K is a constant of pro-

of the systems studied hysteresis is purely dynamical in ori; ortionality. In this paper our basic goal is to understand the
gin, whereas in some others irreversibility is caused partiaII)P : y. In this pap 9 ; .
by interaction with a heat bath. In this paper we will be scaling properties when the frequency is too high for the

considering a hysteretic system of the first type, which hagescrlpnon given by Eq(3) to be valid. We \.N'" present a
already received some attention in the context of switchin omprehensive numenqal study.of the scaling properties of
in optical and electronic devices. An example of one suchhe area (.)f the hystere5|s.loop W.'th respect to both frequen.cy
work is Ref.[13], which is henceforth referred to as JGRM and amplitude of modulation. This (_:omplements the study in
in this paper. The dynamical equation studied in JGRM is‘]GRM but we have qndertaken this stud_y largely to L_mder-
stand our own previous results regarding hysteresis loss

given by when noise is added to the right hand side of &y[14]. In
dx Sec. Il we describe the methodology of our investigation.
d—=ax—bx3+ a coswt (1) Section Il describes the results and finally Sec. IV contains
t some concluding remarks.
(with a and b>0) wherea and w represent the amplitude
and frequency of modulation. Through a suitable choice of Il. METHODOLOGY
the units ofx andt, Eqg. (1) can be reduced to the form To study the area scaling properties of the dynamics de-
d scribed by Eq(2), we make use of what is already known for
—X=x—x3+ o Coswt 2) the scaling properties when the dynamics is described by
dt '
dx 3 )
In this paper we investigate the scaling properties of the area, g~ X tasinet. 4
denoted byA(«,w), of the hysteresis looA(«,w) is given
by Here the scaling law in the low frequency regime is given by
3g X(t)d(a coswt) Ala, )= (@w) ™ ®)

This was derived in Ref.15] in the context of an optically
where the integral is over one complete cycle of modulatiorbistable semiconductor laser, when it is operated exactly at
after the trajectoryx(t) has converged onto the attractor. the threshold. The only difference between E@sand(4) is
Scaling behavior of the quantit(«,w) was the object of the term linear irx, which is present in Eq2) but is missing
investigation in JGRM where they established, both analytiin Eqg. (4). If in the solution of Eq(2), it so happens that is
cally and numerically, thain the limit of low frequencyhe  much smaller thaw® for most of the time in a given cycle of
hysteresis loop area is given by modulation, then in that range of parametess«) of the

dynamics, scaling laws for Eq2) can be expected to be

same as those for Ed4). This condition is likely to be
*Electronic address: sps@jnuniv.ernet.in satisfied wherw>1 andw is in an intermediate range. The
TElectronic address: sarkar@jnuniv.ernet.in reason whyw should be in an intermediate range is that the

1063-651X/97/566)/6581(5)/$10.00 56 6581 © 1997 The American Physical Society



6582 DEBASHISH BOSE AND SUBIR K. SARKAR 56

amplitude of motion for a fixed value o generally de- 4
creases with increasing. Thus if w is too high the ampli-

tude of motion is correspondingly small and the condition @ A=0 L

thatx should be much less thae is explicitly violated. On * 8% o o

the other hand ity is too small then also the argument given 2t o’ o
above for the existence of identical scaling properties breaks < N o
down. For a fixed value o, asw goes to zero, the hyster- < . o
esis loop shrinks continuously and the size becomes arbi- o
trarily small for Eq.(4). But, in the same limit, the area of T oob e
the hysteresis loop reaches a limiting finite value for &. A
with the regionx<x® not contributing to the area of the loop

at all. So if we leave out this low frequency range, where Eq.

(3) should be applicable, the scaling properties for Ej. 2 . . .
should be essentially the same as those for (Bpif « is -4 -2 0 2 4
sufficiently large. We keep this observation in mind in what log,, &

is to follow. We have carried out extensive numerical calcu-
lation for A(«,w) in a very large range of the values af
andw to test this proposition. Thus we find that@agoes to

a. from the upper side, the scaling exponents for hetéind . i

w are indeed 2/3 as already derived and verified in JGRM. . o @
But as @ becomes very large and goes beyond the low [
frequency regime the area scaling exponents with respect to
both @« and w approach 4/5 as established in Rdf5]. We = o* a
also observe a continuous transition between these two kinds & .
of scaling behavior in a sense that will be elaborated on 4r o’
through the presentation and analysis of our numerical data. .
We have reasons to believe that the range of amplitude and .
frequency that we have considered is comprehensive in the
sense that no new scaling properties are expected beyond this 2
domain in the amplitude-frequency plane. -3

(a) a=1.0x 10>

(®) a=1.0x10°

0 eda
A

logmu)
lll. RESULTS FIG. 1. Log-log plot of the area of the hysteresis loop as a

Our numerical data are generated by integrating 2j. function of the frequency of modulatiosn for two different values
from an arbitrary initial condition and applying suitable con- ©f the amplitude of modulatioria) &= 10” and(b) a=10°. A is the
vergence criterion on the hysteresis loop area as a function fé2 and has different values specified in the figures for points
the cycle number of the applied modulation. Analysis ofdenoted by different kinds of symbol@® and .
scaling of area with respect to frequency and amplitude are
presented in Secs. Il A and 11l B, respectively. Section Il C and greater tham,(«), respectively. As can be seen from
combines the results of Secs. Il A and 11l B to produce thethe figures, the exponent is alwaysl in the high frequency
unified phase diagram of the scaling analysis. regime beyondw,(a). For w<w,(a), the situation is as
follows:

wp(@) is a monotonically increasing function ef and
goes asy?®for a>a,. As we will see later, this power law

We have computed the area of the hysteresis loop as @ependence ab,(«) is consistent with the scaling behavior
function of frequency for a set of values of the amplitude inwe are proposing and is supported by our numerical data. So
the range 1-10 For each value of the amplitude, the rangein the region where area increases with frequency, the upper
of frequency studied varies from six to ten decades. Figuregmit of the range ofw for a particular value of is given by
1(a) and 1b) display the area of the hysteresis loop as a (), which is intrinsic to the problem. On the other hand,
function of frequency on a log-log scale for two values of githough the lower limit of is actually zero, for the purpose
amplitude for purposes of illustration. In every case, initially of numerical work, computational constraints force us to take
the area increases with frequency, reaches a maximum forigs value to be in the range of 16-10 3. We denote this
characteristic frequencyp,(a), and then decreases beyond jower limit by w,(a). This computational limitation cre-
it. For w and « sufficiently greater thanw,(a) and ac,  ates a problem when it comes to verifying the area scaling
respectively, the area is given exactly by’ ™*. This can  |aw in the limit w— 0, for larger values ofr. We expect the
be seen easily from Ed2). Whena is large compared to  exponent to be 2/3 for frequency in the range between 0 and
unity and w is sufficiently higher tharwy(a), x(t) will be  some upper limitwy(a). But wg(a) continues to decrease as
equal toa coswt and the above result follows. In contrast, as « increases and eventually falls below the lowest frequency
frequency goes to zerpA(«a,w) —Ag] should go to zero as [ wpmi(@)] that we can deal with computationally, within our
w?". For this reason the vertical axis in Figgajland 1b) resources. Figure(lh) illustrates such a situation where the
denotes logy A(a,w)—Aq] and logA(e,w) for w less than range with the exponent equal to 2/3 is entirely below the

A. Scaling with respect to frequency
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TABLE I. Scaling exponents with respect to frequency and their 4 T T .
ranges of applicability for different values of the amplitude. (@) T=32x10° .
A * P=o,a=4, o~
Amplitude Frequency range  Scaling exponent  Region 3 L °
[}
1.0 10°38-10714 0.656 | s ol .
>100 -1.000 v < .’
10.0 10°39-10701 0.667 ! = .
>1046 -0.999 IV = 1 .~
1.0x 102 10739-1072¢ 0.670 | o
10723-10°° 0.717 [ of .
>1046 -1.000 v ¢
1.0x10° 10739-10722 0.699 Il 1 . . .
10729-100° 0.756 1l 0 2 4 6
>1072 -1.000 \% log,, (a’ - %)
1.0x10* 107391028 0.733 I
_ 7.5 .
10723-10'8 0.772 m (b) T=125x10"
>10%9 -0.999 \% o p=0.4=0 oo *
1.0x10° 10 27— 10*° 0.784 1l sob o Bo A=A o’
>10°8 -1.000 v oo
< o
. . $ 25 d
lowest frequency for which the data are available. The data =2 a
for frequency betweewi,(«) and w,(«a) are divided into 2 a
one or more ranges such that data over each range can be @
fitted to a straight line to a very good approximation. or o
Table | shows the results of this analysis for a represen- o
tative set of values of the amplitude. It contains information . ) .
regarding the ranges into which the data have been divided 23 0 5 4 6
in each case and the best fit value of the scaling exponent for log,, Vic - 80

each range. The data contained in Table | reflect the follow-
ing scenario: for larger values of the amplitude there will be FIG. 2. Log-log plot of the area of the hysteresis loop as a

three regions. _Region | covers the domaiﬁi&)<wo_(a) . function of the amplitude of modulation for two different values
where the scaling exponent is 2/3. Region Ill, which will ot the time period of modulation(a) T=3.2x10% and (b)
exist only whena is sufficiently high, is characterized by an 1-1 251072, A is the areaA andg have different values speci-

exponent of 4/5—the domain of applicability being fied in the figures for points denoted by different kinds of symbols,
w1(@) <w<wmna(a), where w{ @) is somewhat smaller @ andl.

than wp(@). Region Il [wo(a)<w<w;(a)] is a transition

region \_/vhere the $'°pe changgs ffo'f” 2/3 to 4/5. T_he reg'OPespectiver. The analysis in the following makes use of data
containing data withw>w(«) is defined to be region IV oo mnyted for a set of values of time period spanning seven
and it exists for all values of the amplitude. The last columnyo44es. The amplitude varies over five decades in each
of Table | displays information regarding the type of region . se The area is always a monotonically increasing function
that the data in a particular row represent. Wheiis just o 5 mpjitude. To facilitate scaling analysis the data in Figs.
above ac, only regions ,I and ,I\,/ will b? present. Ag is 2(a) and 2b) are presented using appropriate biasemnd g
increased so thab,(a) is sufficiently higher thanwo(a), o areq and amplitude, respectively. The actual values of
region Il will also make an appearance. Finally @sin- 504 3 are different for points represented by different kinds
creases even more region Il will also come into the picture,; symbols and their values are given in the figures. The
and an increasingly higher range of data just betowa)  oints represented by squares denote cases whisgreater

Wri]" hl?ve ah§lope of 4/5 a}?‘\ cr?ntinues LO increase. While 5, wp(a). This is the region where ared) is known to
checking this scenario with the data that are presented ife hronortional tar?w =t and thus for these points, defined

Figs. 1@ and 1b) and Table | one has to remember that a”to be part of region IMin continuation of the notation used

or parts_of regions | and Il may be missing at higher ampli-in Sec. lll A), the slope should be 2. For the data outside of
tudgs since the data in the rangec®<wmin(e) are not region IV we are actually plottinfA(«,w) —Ag] as a func-
available. tion of Ja’— acz on a log-log scale. Over a range efjust
abovea, the scaling law given by Ed3) should be appli-
cable and the slope in the log-log plot should be equal to 2/3.
The analysis for scaling with respect to amplitude alsoThis is denoted by region I. If the amplitude is sufficiently

follows the procedure used above. For purposes of illustrahigh then we expect the area to be proportional to 4/5 power
tion the area of the hysteresis loop is plotted as a function obf amplitude. Thus, independent of the value of the fre-
the amplitude on a log-log scale for the time periof) ( quency, the slope in the log-log plot should always be 4/5 for
equal to 3.X10% and 1.2510 ! in Figs. 3@ and 2b), the region(region Ill) where the amplitude is sufficiently

B. Scaling with respect to amplitude
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TABLE Il. Scaling exponents with respect to amplitude and touching the frequency axis denote the values of the fre-
their ranges of applicability for different values of the time period. guency for which area versus amplitude data were presented

in Table II. The filled circles very close to the amplitude axis

Time period  Amplitude range  Scaling exponent  Region ganote the lowest frequency data points for each of the val-
2 56x 107 10021 1 -4 0.677 I ues of the amplitude for which the area versus frequency data
10%6— 1037 0.730 I were presented in Table I. The curve passing through the
10%2— 1050 0.775 I squares is the representation of the functigyia). Within a
3.20x 107 10P-03— 1oL4 0.683 I narrow band on either side of this curve in thea plane
10L9— 129 0.735 Il there is no well-defined scaling property. In the region above
1032— 1053 0.786 1 the line PQR (region Ill) the scaling exponent with respect
4.00% 10 10006 1 R0 0.732 I to both amplitude and frequency is 4/5. It should be remem-
10%-6— 103 0.796 I bered that, starting from the poif@, the linesQP and QR
5.00% 1C° 10P-90— 10p-3 0.806 I extend indefinitely. Below the lin& S and above the curve
1.25x 107! 10°-03— 120 2.000 v for wy(a), extended indefinitely towards the low frequency
10+2— 103 0.826 I end, the scaling property is of the type represented by Eq.
2.44x10°% 100031003 2.000 v (3). This is the domain for which the scaling properties were

first derived and verified in JGRM. Region Il, in between the
lines TS and QP extended indefinitely towards the low fre-
quency end, is where the scaling exponent changes from 2/3

sition region(region ||) where the S|ope Changes from 2/3 to phase diagram iS ConSiStent W|th the information aVailable in
4/5. This can be seen in Fig(d. In Table Il we present the Tables I and Il one just has to take sections parallel to the
information regarding the ranges into which the data havérequency and amplitude axes of the phase diagram at the
been divided in each case and the best fit value of the scalingppropriate values of the amplitude and frequency, respec-
exponent for each range. The type of region for each range kively. It must be remembered that a certain amount of sub-
specified in the fourth column. Sinae,(«) is a monotoni-  jectivity is involved in identifying the boundaries of region I
cally increasing function, region IV will continue to shrink as well as the high frequency bounda®R of region Il.
as the frequency goes to zero. Hence when the frequency Finally, to see that the function,(a) goes asv? for large
very low we should see regions |, Il, and Il as illustrated by «, consider the dependence of the functiffia,w) on
Fig. 2@). As frequency increases eventually region | will o and o on the two sides of the curve represented by the
disappear first followed by region Il. Simultaneously an IN-function w,() in the (@, ) plane. Since regions Il and IV
creasing range of data in the lower amplitude end will appeageet along this dividing linéapart from a narrow transition
in region 1V. band for higher values of the amplitude, the two expressions
for A(a,w) must produce the same value along this line.
Thus [ @wy(@)]*® must be proportional te?w, (), i.e.,

We now combine the results presented in the Secs. Il Avy(«a) is proportional toa?3.
and Il B to produce a unified phase diagram for the scaling
exponents in the amplitude-frequency plane. This is dis-
played in Fig. 3. The four regions marked I, Il, Ill, and IV
are two-dimensional extensions of the nomenclature already
used in Secs. lll A and Il B. The extended vertical lines

C. Phase diagram of the scaling exponents

IV. DISCUSSION

In this paper we have presented a comprehensive numeri-
cal study of the scaling properties of the area of the hyster-
6 r r : y esis loop generated by the dynamics of E2). For reasons
. that should be apparent, no new scaling properties are ex-
pected in the domains of the amplitude-frequency plane that
o ] have not been explored in this study. For the applications
discussed in JGRM and in Rdfl5], hysteresis loss in the

logwoc

T Region I

Region I

CA-A)

okl (@ -]

213 T

Region IV

2 .1
Ao ®

4 2

logw(n

low frequency regime was the object of primary interest. But
in the present study we have imposed no such restriction on
the frequency. Since Eq2) provides a rather commonly
used mathematical model of bistable hysteresis in many dif-
ferent kinds of situations we hope that the results described
in this paper will be of relevance in these different contexts.
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